الوسام .. الاكاديمي ابن الجنوب ..حسن القرشي ... لؤلؤة زهران كل الحكاية قسم المحاورة


 
 عدد الضغطات  : 5725


إهداءات


 
 

إضافة رد
 
أدوات الموضوع إبحث في الموضوع انواع عرض الموضوع
#1  
قديم 13/02/2009, 12:21 PM
وسونة âيه ôîًَىà
Awards Showcase
لوني المفضل Cadetblue
 رقم العضوية : 8552
 تاريخ التسجيل : Feb 2008
 فترة الأقامة : 6141 يوم
 أخر زيارة : 10/03/2009 (03:47 AM)
 العمر : 45
 المشاركات : 1,143 [ + ]
 التقييم : 79
 معدل التقييم : وسونة will become famous soon enough
بيانات اضافيه [ + ]
افتراضي شرح اللوغاريتمات مع تمارين محلولة هامة ثالث ثانوي



لطشت الحلول هذه من كمبيوتر أختي قلت لعلها تفيدكم ....

الدالة اللوغاريتميه
إذا كان أ ينتمي إلي ح+ – {1} فإن س = لـــــوأ ص يؤدي الي ص = (أ) س
• لـــــوأ ص تقرأ لوغاريتم ص لأساس أ
• الدالة اللوغاريتميه هى الدالة العكسية للدالة الآسية
• س ينتمي إلي ح
• ص ينتمي إلي ح+
مثال (1)
إذا كانت س = لــــــــــــو5 125 اوجد قيمة س ؟
الحل
5 س = 125
5 س = 53
س = 3
مثال (2)
اوجد قيمة س إذا كان
1) لــــــــو2 س = ــ 4
2 ) لـــــــــو س 8 = 6
3) لـــــــــو س 7س = 2
4 ) لــــــــو9 81 3 = س

الحل
1) س = (2)^-4 = 1/16
2) لــــــــو س 8 = 6
س6 = 8 = (2) 3 = ( جذر 2 )6 س = جذر 2
3 ) لـــــــــوس 7س = 2
س 2 = 7 س
س2 – 7س = 0
س ( س – 7 ) = 0
س = 0 & س = 7
4) لــــــــــو9 81 جذر 3 = س يؤدي 9س = 81 جذر 3
(3)4 × جذر 3 = 9 ^س
( جذر 3 ) 9 = ( جذر3 )4س
4 س = 9
س =9/4

CC0000
صَبْراً جَمِيلاً ما أقربَ الفَرَجَا من رَاقَبَ اللَّهَ فِي الأمورِ نَجَا
منْ صدق الله لم ينلهُ أذى ومن رجَاهُ يكونُ حيثُ رَجَا


مثال (3)
اوجد قيمة كل من
1) لــــــــــــو 2 64
2) لـــــــــــو3 243
3) لـــــــــو 5 125
4) لـــــــــــــــو7 7
الحل
1) نفرض أن س = لـــــــــــو2 64
2س = 64 = 2 6 000000000000س = 6
لـــــــــــو2 64 = 6
2) نفرض أن س = لـــــــــــو3 243
3س = 243 = 3 5 00000000000س = 5
لـــــــــــو3 243 = 5
3) نفرض أن س = لـــــــــــو5 125
5س = 125 = 5 3 00000000000س = 3
لـــــــــــو5 125 = 3
4) نفرض أن س = لـــــــــــو7 7
7س = 7 = 7 1 0000000000000س = 1
لـــــــــــو7 7 = 1


قوانين اللوغاريتمات
• لــــــــــــو م س + لــــــــــو م ص = لـــــــــــــو م س × ص
• لــــــــــــو م س – لـــــــــــو م ص = لـــــــــــــو م س/ص
• لــــــــــــو م س ن = ن لــــــــــــو م س
• لــــــــــــو س س = 1
• لــــــــــــو م 1 = صفر
مثال (1)
بدون استخدام الآلة اثبت أن 2 لــــــــو 2 14 – 4 لــــــو 2 5 + 2 لــــــو 2 25/7= 2
الحل
الأيمن = 2 لــــــــو 2 14 – 4 لــــــو 2 5 + 2 لــــــو 2 25/7
= لــــــــو 2( 14)^ 2 – لـــــــو 2( 5)^ 4 + لــــــــو2 (25/7)^2
= لــــــــو 2 196 – لـــــــو 2 625 + لــــــــو 2 25/7
= لـــــــــو 2 (196×625) /( 625 × 49 ) = لــــــــو2 4 = لــــــو2 (2)2 = 2 لـــــو2 2 = 2
مثال (2)
بدون استخدام الآلة اثبت أن :
2 لـــــو3 15 + لـــــو3 7/3 – لــــو3 5 – لــــو3 35 = 2 لــــــــو5 جذر 5
الحل
الأيمن = 2 لــــــــو3 15 + لــــــو3 7/3 – لــــــو3 5 – لــــــــو3 35
= لــــــــو3( 15)^2+ لــــــــو3 7/3 – لـــــــو3 5 – لـــــــو3 35
= لــــــــو3 225 + لــــــــو3 7/3 – لـــــــو3 5 – لـــــــــو3 35
= لـــــــــو3(225×7)/( 5× 3×35) = لــــــــو3 3 = 1
الأيسر = 2 لـــــــــو5 جذر 5 = لـــــــــــو5 ( جذر 5 )^ 2 = لـــــــو5 5 = 1 = الأيمن
مثال (3)
إذا كان : 3 لـــــــو س + 4 لــو ص – لــــــو س ص^ 2 = 2 ( لـــــو 2 + لـــــو 3 )
اثبت أن : س ص = 6
الحل
3 لـــــــو س + 4 لــو ص – لــــــو س ص^ 2 = 2 لـــــو 2 + 2 لـــــو 3
لـــــــو س^3 + لــو ص^4 – لــــــو س ص^ 2 = لـــــو( 2)^2 + لـــــو( 3 )^2
لــــــــو (س^3 × ص^4 ) / س ص^ 2 = لــــــــو 4 + لــــــــــو 9 = لــــــــو 4 × 9
لــــــــــــــــــــــو س2 ص2 = لــــــــــو 36
س2 ص2 = 36 بأخذ الجذر التربيعي للطرفين
س ص = 6


فضل الذكر
قال صلي الله عليه وسلم " ألا أنبأكم بخير أعمالكم ، وأزكاها عند مليككم ، وأرفعها فى درجاتكم ، وخير لكم من إنفاق الذهب والورق وخير لكم من أن تلقوا عدوكم فتضربوا أعناقهم ويضربوا أعناقكم ؟ قالوا : بلى . قال ذكر الله "
الترمذي ، بن ماجه .
قال صلي الله عليه وسلم "مثل الذى يذكر ربه والذى لا يذكر ربه مثل الحى والميت "
البخارى


تذكر أن
لـــــوأ ص 000000000000 ص = (أ)^ س
مثال (4)
اوجد مجموعة حل المعادلة : لــــــــــو س ( س + 6 ) = 2
الحل
لــــــــــو س ( س + 6 ) = 2 0000000000 س + 6 = س^2
س2 – س – 6 = 0
( س – 3 ) ( س + 2 ) = 0
س = 3 & س = – 2 مرفوض
مجموعة حل المعادلة = { 3 }
مثال (5)
اوجد مجموعة حل المعادلة : لــــــــــو ( س2 + 9 س ) = 1
الحل
لــــــــــو ( س2 + 9 ) = 1 س2 + 9 س = (10)^1
س2 + 9س – 10 = 0
( س – 1 ) ( س + 10 ) = 0
س = 1 تحقق المعادلة س = – 10 تحقق المعادلة
مجموعة حل المعادلة = { 1 ، – 10}
مثال (6)
اوجد مجموعة حل المعادلة : لـــــــو4 س + لـــــــو4 ( س + 12 ) = 3
الحل
لــــــــــــــــو 4 س ( س + 12 ) = 3
لــــــــــــــو 4 ( س2 + 12 س) = 3
س2 + 12 س = 4 3 = 64
س2 + 12س – 64 = 0
( س – 4 ) ( س + 16 ) = 0
س = 4 & س = ــ 16 مرفوض
مثال (7)
اوجد مجموعة حل المعادلة : لــــــــــو 4 لــــــــو 2 لـــــــــو 3 س^8 = 1
الحل
لــــــــــو 4 لــــــــو 2 لـــــــــو 3 س^8 = 1
لــــــــو 2 لـــــــــو 3 س8 = 4 ^1 = 4
لـــــــــو 3 س8 = (4)^2 = 16
س8 = (3)^ 16
س8 = (3)^(2 ×8 )= ( (3)^2 )^8
س8 = ( (3)^2 )^8
س = (3)^ 2 = 9
مجموعة الحل = { 9 }
تذكر أن
لـــــــو م س = لــــــوم ص 0000000000000000000 س = ص

مثال (6)
اوجد مجموعة حل المعادلة :
لــــــــــو 3 ( س – 1 ) + لــــــــو 3 ( س + 1 ) = 3 لــــــــو 3 2
الحل
لــــــــــو 3 ( س – 1 ) + لــــــــو 3 ( س + 1 ) = لــــــــو 3 (2)3
لــــــــــو 3 ( س – 1 )( س + 1 ) = لــــــــو 3 8
لــــــــــو 3 ( س2 – 1 ) = لــــــــو 3 8
س2 – 1 = 8
س2 – 9 = 0
( س – 3 ) ( س + 3 ) = 0
س = 3 س = – 3 مرفوض
م . ح = { 3 }

مثال (7)
اوجد مجموعة حل المعادلة : لـــو( س – 1 )^ 3 – 3 لـــو( س – 3 ) = لـــو 8
الحل
لــــــــــو ( س – 1 )^3 – لــــــــو ( س – 1 )^3 = لــــــــو 8

لــــو( س – 1 )^3 / ( س – 3 )^3 = لـــــــــو 8

( س – 1 )^3 / ( س – 3 )^3 = 8 بأخذ الجذر التكيعبيي للطرفين

( س – 1 ) / ( س – 3 ) = 2

س – 1 = 2س – 6
س = 5
م.ح = { 5 }

مثال (7)
اوجد مجموعة حل المعادلة :
لــــــــــو ( س – 2 ) + لــــــــو ( س – 3 ) = 1 – لــــــــو 5
الحل
لــــــــــو ( س – 2 ) + لــــــــو ( س – 3) = لــــــــو 10 – لــــــــو 5
لــــــــــو ( س – 2 )( س – 3) = لــــــــو10/5 = لــــــــــــو 2
لــــــــــو ( س^2 – 5 س + 6 ) = لــــــــو 2
س^2 – 5 س + 6 = 2
س^2 – 5 س + 4 = 0
( س – 4 ) ( س – 1 ) = 0
س = 4 أ، س = 1 مرفوض
م . ح = { 4 }
تذكر أن

( 1 )لـــــــــــــوم س^ ن / لـــــــــــــوم س^ ك = ن لـــــــــــوم س / ك لـــــــــــوم س = ن / ك


( 2 ) لـــــــــــــوم125 / لـــــــــــــوم5 لا يساوي 125 / 5

مثال (8)
إذا كان لـــــــو س / لو 5 = لو 36 / لو 6 = لو 64 / لو ص فاوجد قيمة س ، ص ؟
الحل
لـــــــو س / لو 5 = لو 36 / لو 6 = لو 6^2 / لو 6 = 2لو6/ لو6 = 2

لـــــــو س / لو 5 = 2 لــــــــــــــو س = 2 لــــــــــــو 5
لــــــــــــــــــو س = لـــــــــــــو (5)^2 = لـــــو 25
س = 25
لو 64 / لو ص = 2 00000000000 2 لـــــــــو ص = لــــــــــو 64
لـــــــــــــو ص^2 = لــــــــــــــــو 64
ص^2 = 64 000000000 ص = 8
مثال (9)
اوجد مجموعة حل المعادلة : لـــــــــــو2 س =( 2 لو 9 × لو 8 ) / (لو 3 × 3 لو 2 )
الحل
لـــــــــــو2 س = ( 2لـــــو 3^2× لــــــو 2^3 ) / (لو 3 × 3 لو 2 )=
( 4لـــــو 3 × لــــــو 2^3 ) / (لو 3 × 3 لو 2 )=

لــــــــــــو2 س = 4

لـــــــــو 2 س = 4 00000 س = (2)^4 س = 16
مثال (10)
اوجد قيمة : لـــــــو7 لـــــــو3 81 / لـــــــو7 32
الحل
لـــــــو7 لـــــــو3 81 / لـــــــو7 32 = لـــــــو7 لـــــــو3 (3)^4 / لـــــــــو 7 32

= لـــــــو7 4× لـــــــو3 3 / لـــــــو 7 32 = لـــــــو7 4 × 1 / لـــــــو7 32 =
2 لـــــــــو7 2 / 5 لـــــــــو7 2 = 2


تذكر أن

• ( لـــــــــــــوم س)^2 = لـــــــــــوم س × لـــــــوم س

• لـــــــــــــوم س^2 = 2 لـــــــــــوم س

• ( لـــــــــــــوم س)^2 ≠ لـــــــــــوم س^2

مثال (11)
اوجد مجموعة حل المعادلة : ( لـــــــــــو س )^ 2 ــ لــــــــــــو س^3 = 4
الحل
( لـــــــــــو س )^ 2 ــ لــــــــــــو س^3 = 4
( لـــــــــــو س )^ 2 ــ 3لــــــــــــو س – 4 = 0
( لــــــــــو س – 4 ) ( لـــــــــو س + 1 ) = 0
لــــــــــــو س = 4 لـــــــــــــو س = ــ 1
س = 10^4= 10000 0000 س = 10 ^- 1 = 0.1
مجموعة حل المعادلة = { 10000 ، 0.1 }
مثال (12)
اوجد مجموعة حل المعادلة : ( لـــــــــــو س + 1 ) لــــــــــــو س/ 10 = 3
الحل
( لـــــــــــو س + 1 ) لــــــــــــو س / 10 = 3
( لـــــــــو س + 1 ) ( لــــــــــو س – لــــــــو 10 ) = 3
( لـــــــــو س + 1 ) ( لــــــــــو س – 1 ) = 3
( لـــــــــو س ) ^2 – 1 = 3
( لـــــــــو س )^ 2 – 4 = 0
( لــــــــــو س – 2 ) ( لــــــــو س + 2 ) = 0
لــــــــــــو س = 2 لــــــــــو س = – 2
س = (10)^2 = 100 00000000000000000س = (10)^ ــ 2 = 0.01
م. ح = { 100 ، 0.01 }
مثال (13)
اوجد مجموعة حل المعادلة : لـــــــــــو س = [( لـــــــو 5 )^2 ــ لـــــــو 125] / لـــــــو 0.005
الحل
لـــــــــــو س = [( لـــــــو 5 )^2 ــ لـــــــو 5^3] / [لـــــــو 5 ــ لـــــــو 1000 ]

لــــــــــــو س = [( لـــــــو 5 )^2 ــ 3 لـــــــو 5] / لـــــــو 5 ــ 3

لـــــــــو س =لـــــــو 5 ( لـــــــو 5 ــ 3 ) / (لـــــــو 5 ــ 3) = لـــــــــــــو 5

لـــــــــو س = لـــــــو 5 00000000000000000000 س = 5

مثال (14)
إذا كان لــــــــو س 5 = 0.5 فاثبت أن :
[ لــــــــو5 س^2 – لـــــــــو 4س ] / [لــــــــو3 ( 3س + 6 ) ] = 1/2

الحل
لــــــــو س 5 = 0.5 00000 س^ 0.5 = 5 00000000س = 25
لــــــــو5 س^2 – لـــــــــو 4س / لــــــــو3 ( 3س + 6 ) =
لــــــــو5 (25)2 – لـــــــــو 4× 25 / لــــــــو3 ( 3× 25 + 6 )

لــــــــو5 س^2 – لـــــــــو 4س / لــــــــو3 ( 3س + 6 ) =
لــــــــو5 (5)4 – لـــــــــو 100 / لــــــــو3 81

لــــــــو5 س^2 – لـــــــــو 4س / لــــــــو3 ( 3س + 6 ) =
4 لــــــــو5 5 – 2لـــــــــو 10 / 4 لــــــــو3 3
لــــــــو5 س^2 – لـــــــــو 4س / لــــــــو3 ( 3س + 6 ) =
(4 - 2 ) / 4 = 2 / 4 = 1 / 2
مثال (15)
اوجد مجموعة حل المعادلة : (8)^ س+ 1 = (9)^ س – 2
الحل
بأخذ اللوغاريتم للطرفين نجد أن
لـــــــــــو (8)^ س+ 1 = لــــــــــــو (9)^ س – 2
( س + 1 ) لــــــــــــو 8 = ( س – 2 ) لـــــــــو 9
س لــــــــــو 8 + لــــــــــو 8 = س لــــــــــو 9 – 2لـــــــــو 9
س لــــــــــو 8 – س لــــــــــو 9 = ــ لــــــــــو 8 – 2لـــــــــو 9
س ( لــــــــــو 8 – لــــــــــو 9 ) = ــ لــــــــــو 8 – 2لـــــــــو 9

س = ( لــــــــــو 8 – لــــــــــو 9 ) / (ــ لــــــــــو 8 – 2لـــــــــو 9)
باستخدام الآلة الحاسبة من اليسار إلى اليمين كالآتي :
( - 2 log 9 – log 8 ) ÷ (log 8 – log 9 ) =
س = 54.9645
مثال (16)
إذا كان : 2 ×5 ^ص = 5 × 2 ^ص + 2 فاوجد قيمة ص لأقرب رقم عشرى
الحل
لــــــــــو ( 2 ×5 ^ص ) = لـــــــــو ( 5 × 2 ^ص + 2 )
لـــــــــو 2 + لــــــــــو 5 ^ص = لـــــــــــو 5 + لـــــــــو 2 ^ص + 2
لــــــــو 2 + ص لـــــــــو 5 = لـــــــــو 5 + ( ص + 2 ) لــــــــو 2
لــــــــو 2 + ص لــــــــو 5 = لــــــــو 5 + ص لــــــــو 2 + 2لــــــــو 2
ص لــــــــو 5 ــ ص لــــــــو 2 = لــــــــو 5 + 2لــــــــو 2 ــ لــــــــو 2
ص ( لــــــــو 5 ــ لــــــــو 2 ) = لــــــــو 5 + لــــــــو 2

ص = ( لــــــــو 5 + لــــــــو 2 ) / ( لــــــــو 5 ــ لــــــــو 2 )

( log 5 + log 2 ) ÷ (log 5 – log 2 ) =
ص = 2.5
مثال (17)
إذا كان : 3 ^(7 + 2 س) = 18.1 فاوجد قيمة س لأقرب رقمين عشرين
الحل
لــــــــــو [3 ^(2س + 7 ) ] = لـــــــــو 18.1
( 2س + 7 ) لو 3 = لــــــــــــــو 18.1
2س لــــــــــــو 3 + 7 لـــــــــو 3 = لــــــــــــو 18.1
2س لــــــــو 3 = لــــــــــو 18.1 – 7 لــــــــــــو 3

س = ( لــــــــــو 18.1 – 7 لــــــــــــو 3 ) / 2 لو 3

( log 18.1 - 7 log 3 ) ÷ 2 log 3 =
ص = ــ 2.18

مثال(18)
إذا كان : لـــــوب س + لـــــوب ص – 2لــــــــوب ( س + ص ) / 2 = صفر

أثبت أن س – ص = 0
الحل
لـــــوب س + لـــــوب ص – 2لــــــــوب ( س + ص ) / 2 = صفر

لـــــوب س + لـــــوب ص – لــــــــوب [ ( س + ص ) / 2 ]^2= صفر

لـــــوب س + لـــــوب ص – لــــــــوب [ ( س2 + 2س ص + ص2 ) / 4 ] = صفر

لـــــوب ( س × ص × 4 ) / ( س2 + 2س ص + ص2 ) = 0

( س × ص × 4 ) / ( س2 + 2س ص + ص2 ) = 1

س2 + 2س ص + ص2 = 4 س ص
س2 + 2س ص + ص2 – 4 س ص = 0
س2 – 2س ص + ص2 = 0
( س – ص )( س – ص ) =0
س – ص = 0 #
مثال(19)
إذا كان ص = أ^ لــــــــوأ س 0000000فاثبت أن ص = س ومن ذلك أوجد قيمة 2^ لـــــــو2 5
الحل
ص = أ^لـــــــوأ س 000000000000000000 بوضع لــــــــوأ س = ع

ص =أ^ع
لــــــــــو أ ص = ع
لــــــــــو أ ص = لــــــــوأ س
ص = س

2^لـــــــو2 5 = 5

مثال(21)
أثبت أن : لـــــــــوس ص = لــــــــــوب ص × لــــــوس ب
ومن ذلك حل المعادلة : لـــــــــــــــو9 هـ = لــــــــــو3 4
الحل
بوضع : لـــــــــوس ص = ع ص = س^ع (1)
بوضع : لــــــــــوب ص = ن ص = ب^ن (2)
بوضع : لــــــــــوس ب = ك ب =س^ك (3)
بالتعويض من (1) & (3) فى (2) نجد أن
س^ع = (س^ك)^ن 0000000الأساس = الأساس 0000000الأس = الأس
ع = ك × ن
لـــــــــوس ص = لــــــــــوب ص × لــــــوس ب
لـــــــــــــــو9 هـ = لــــــــــو3 4
لـــــــــو9 هـ = لــــــــــو9 4 × لــــــو3 9
لـــــــــو9 هـ = لــــــــــو9 4 × لــــــو3 23
لـــــــــو9 هـ = لــــــــــو9 4 × 2 لــــــو3 3
لـــــــــو9 هـ = ( لــــــــــو9 4 )× 2 = 2 لــــــــــو9 4 = لــــــو9 24 = لــــــو9 16
لـــــــــو9 هـ = لــــــــــو9 16 00000000000000000000 هـ = 16
مثال (22)
حل المعادلة : لـــــــــــــــو9 هـ = لــــــــــو3 4
الحل
لـــــــــــــــو9 هـ = لــــــــــو3 4 = ك
لــــــــــو3 4 = ك 0000000 3^ك = 4 (1)
لـــــــــــو9 هـ = ك 00000 9^ك= هـ
( 3^2)^ك = هـ (3ك)^2 = هـ (2)
من (1) فى (2)
هـ = (4)^2 0000000000000000 هـ = 16
مثال(23)
إذا كانت س = لــــو 5 ÷ لـــــــو 3 فاوجد قيمة المقدار 9^س – 3 ^ ( س + 1 )+ 2
الحل
س = لو 5/ لو 3 0000000000 س لــــــــو 3 = لــــــــو 5

لـــــــــو 3^س = لــــــــو 5 0000000000000 3^س= 5
قيمة المقدار : 9^س – 3 ^(س + 1 )+ 2 = (3^2)^س – 3 ^س × 3 + 2
= (3^س)2 – 3 ^س × 3 + 2= (5)2 – 5 × 3 + 2
= 25 – 15 + 2 = 12

مع تمنياتي لكم :
بــالــتــوفـيـق والــنــجــاح الـــبـــاهــــــــــر



 توقيع : وسونة





رد مع اقتباس

اخر 5 مواضيع التي كتبها وسونة
المواضيع المنتدى اخر مشاركة عدد الردود عدد المشاهدات تاريخ اخر مشاركة
كلـــــــــــــمني قبـــــــري فقــــال ؟؟؟!!!!!!! المنتدى الإسلامي 5 3611 22/02/2009 04:39 AM
بالصـــــوـوـوـور .. اعتبروـوـوـوـوا يا أولي... المنتدى الإسلامي 4 3120 22/02/2009 04:36 AM
فضل سجدة الشكر اول مرة اعرف شي اكثر من رائع المنتدى الإسلامي 1 3209 22/02/2009 04:34 AM
فضل الوضوء قبل النوم المنتدى الإسلامي 3 3635 22/02/2009 04:33 AM

قديم 13/02/2009, 02:22 PM   #2
المؤسس والمشـــرف العــــام


الصورة الرمزية صقر الجنوب
صقر الجنوب ٌهé÷àٌ يà ôîًَىه

بيانات اضافيه [ + ]
 رقم العضوية : 2
 تاريخ التسجيل :  Aug 2004
 أخر زيارة : 12/11/2024 (07:53 PM)
 المشاركات : 64,160 [ + ]
 التقييم :  16605
 الدولهـ
Saudi Arabia
 الجنس ~
Male
 MMS ~
MMS ~
 SMS ~
سُبْحَانَكَ اللَّهُمَّ وَبِحَمْدِكَ ، أَشْهَدُ أَنْ لا إِلهَ إِلَّا أَنْتَ أَسْتَغْفِرُكَ وَأَتْوبُ إِلَيْكَ
لوني المفضل : Maroon
افتراضي



رائعة رائعة كعادتك مراقبتنا المبدعة وسونة



 
 توقيع : صقر الجنوب

مواضيع : صقر الجنوب



رد مع اقتباس
قديم 11/05/2009, 06:54 PM   #3


الصورة الرمزية سامي المالكي
سامي المالكي ٌهé÷àٌ يà ôîًَىه

بيانات اضافيه [ + ]
 رقم العضوية : 11644
 تاريخ التسجيل :  Sep 2008
 أخر زيارة : 27/06/2022 (08:55 PM)
 المشاركات : 1,459 [ + ]
 التقييم :  800
لوني المفضل : Cadetblue
افتراضي



شـكــ وبارك الله فيك ـــرا لك ... لك مني أجمل تحية .


 

رد مع اقتباس
قديم 11/05/2009, 07:42 PM   #4


الصورة الرمزية almooj
almooj âيه ôîًَىà

بيانات اضافيه [ + ]
 رقم العضوية : 14546
 تاريخ التسجيل :  Mar 2009
 العمر : 55
 أخر زيارة : 26/04/2013 (06:51 AM)
 المشاركات : 7,596 [ + ]
 التقييم :  4193
لوني المفضل : Cadetblue
افتراضي



وسن جزاك الله خير على ما قدمتي من الحلول للصفوف الثانوية العلمي .

المـوج


 
 توقيع : almooj



رد مع اقتباس
إضافة رد

مواقع النشر (المفضلة)


الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1)
 

(مشاهدة الكل عدد الذين شاهدوا هذا الموضوع : 0 :
لا يوجد أعضاء

تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع


الإعلانات النصية ( أصدقاء الأكاديمية )

انشر مواضيعك بالمواقع العالمية من خلال الضغط على ايقونة النشر الموجودة اعلاه

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
HêĽм √ 3.1 BY: ! ωαнαм ! © 2010
جميع الحقوق محفوظة © لأكاديمية العرضة الجنوبية رباع

a.d - i.s.s.w